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LOWER ESTIMATE OF THE FLIGHT RANGE
OF A FIRE-EXTINGUISHING LIQUID DROP

V. P. Ol’shanskii and S. V. Ol’shanskii’ UDC 614.84:628.174

A closed analytical solution of a nonlinear differential equation with variable coefficients which describes the
vertical motion of an ascending evaporating drop as a material point of variable mass has been constructed
in Airy functions. It is shown that this solution yields a lower estimate of the flight range of the drop when
it outflows at an arbitrary angle to the horizon.

In delivering a fire-extinguishing liquid in the form of a sprayed jet for a long distance, a considerable por-
tion of the liquid is scattered in flight and does not reach the combustion site [1]; therefore, calculation of the limiting
range of effective delivery of a sprayed liquid is a very urgent problem whose solution will make it possible to de-
crease losses of a fire-extinguishing substance, i.e., to improve the effectiveness of its use.

Problems on the ballistics of individual drops as particles of a sprayed jet were considered in [2-6]. It was
assumed that a drop had a spherical shape and that its radius decreased due to evaporation by the linear law in time.
The force of aerodynamic resistance to the motion was considered proportional to the squared velocity of gas flow
around the drop. The problem of ballistics in such a statement is reduced to solution of a system of nonlinear differ-
ential equations with variable coefficients, which requires the application of numerical methods. The construction of
closed analytical solutions, just as simple computational formulas, presents difficulties. Approximate analytical solutions
of the nonlinear Cauchy problem were successfully obtained in [4-6], provided the influence of the gravity force on
the bending of the trajectory of the flight of a drop was neglected.

We suggest a different approach to determining the effective range of flight of a drop. It consists of estimat-
ing this range from below (in the sense that the theoretical range given by the numerical solution of the nonsimplified
Cauchy problem will always exceed the result of the proposed estimate). In order to obtain an analytical estimate, one
does not need to solve a complex nonlinear system; it suffices to find the solution of one differential equation which
describes the vertical motion of a drop upward. In this case, the weight of the drop is opposite to the direction of its
motion, i.e., it exerts a maximum retarding action. As a result, in a fixed interval of time, while ascending vertically,
the drop covers a smaller distance than at other angles of efflux to the horizon.

Just as in [2, 3], we assume that the force of aerodynamic resistance to the motion of a liquid particle is pro-
portional to the squared velocity of gas flow around it. The decrease in the current radius of the drop r(f) in time ¢
due to evaporation is described by the expression [7-9]

r)=rgVN1—et. (D

Here rg = r(0); €' is the time of complete evaporation of the drop. Recommendations for calculating € under specific
conditions of the flight of a drop can be found in [9].

Within the framework of the assumptions made, a change in the flight velocity v = v(f) during vertical as-
cending of the drop is described by the equation
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which is supplemented with the initial condition
v (0) =v 3)

with the velocity of vertical efflux of the drop being denoted by vy.
Taking into account (1), we will introduce a new variable:
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Then the sought-for velocity will be defined by the equation
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where b = 2[3(er0)_1; o= 2g£_1.
To go over from a nonlinear problem to a linear one we will express v via the auxiliary function w and its
derivative. Assuming that

po_ L dw
= Thw o )
instead of Eq. (4) we obtain
dw 3
s+aw=0. (6)

dg
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Here a = \l2bg£_1. The general solution of (6) is the sum
w = c¢Ai (—ak) + c,Bi (- af) , (7N

in which ¢; and ¢ are arbitrary constants; Ai(—m) and Bi(-m) are the Airy functions [10, 11].
Taking into account expressions (5) and (7), we arrive at the general solution of Eq. (2):

_a cAi’(-n)+Bi' (- 1)

8
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Here ¢ = clcgl is an arbitrary constant; 1 = aV1 —¢&f; Ai’(-n) and Bi’(-1) are the derivatives of the Airy functions with
respect to 1. Their values, just as those of the Airy functions themselves, are available in the tables published in [10,
11] and in other publications on special functions. We find the constant ¢ with allowance for the initial condition (3):
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Thus, the lower estimate of the absolute value of the drop flight velocity at any instant of time ¢ € [0; E_l)
can be conventionally obtained with the aid of analytical solutions (8), (9) and tables of special functions [10, 11]. It
is more complex to estimate the range of the drop flight. This is associated with the computation of the integral

t
z=[v@adr. (10)
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It is not reduced to tabulated functions and must be calculated numerically on a computer.
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TABLE 1. Results of Numerical Integration of the System of Differential Equations of Motion and the Lower Estimate of the

Absolute Value of Velocity

t, sec x(f), m/sec y(1), m/sec vp(1), m/sec v(t), m/sec
0.02 96.65 35.00 102.79 102.69
0.05 72.89 26.14 77.44 77.23
0.10 50.63 17.74 53.65 53.31
0.15 37.80 12.82 39.91 39.47
0.20 29.31 9.50 30.81 30.28
0.25 23.05 7.04 24.10 23.50

TABLE 2. Computed Projections of the Motion of a Drop on the Trajectory, as Well as the Lengths of the Radius-Vector and

the Lower Estimate of the Radius-Vector Lengths

t, sec x(1), m y(t), m R(?), m z(1), m
0.02 2.17 0.79 2.31 2.31
0.05 4.68 1.69 4.98 4.97
0.10 7.71 2.77 8.19 8.18
0.15 9.90 3.52 10.51 10.48
0.20 11.56 4.08 12.26 12.21
0.25 12.86 4.49 13.62 13.56

The use of a fire-extinguishing liquid is considered effective when the time of drop flight is limited to the

value of 7,4 at which the current radius of an evaporating particle is equal to half its initial radius [2, 3]. When the
inequality t<t,q = 3(48)_] is satisfied, the integral (10) can be estimated analytically, and the formula for its approxi-

mate value can be given.
In practical calculations, it turns out that 1 <a < 1. Therefore, taking into account the behavior of the Airy

functions at small values of the argument [10], we introduce the asymptotics

—1

2
v > vy =L+ 20N | ()
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the integral for which is expressed in terms of the elementary functions
t
U A-~N1-gt

S(t):Jva(t)dt=Eo[\ll—et—1+AIH[TD (12)
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with A = 1+
2Bvo

and v,(0) = v(0).

Since over the integration interval 7 <#y< 1 sec with v(f) — v,(f) and ¢t — 0O the function
t
@ (1) = j(va 1) —v (r))d;
0
is small in comparison with S(7), it is positive and satisfies the inequality

q)(r)<t[va(t)—v(z)]<5(t)—zv(t).

699



In approximate calculations over the range of effective supply of fire-extinguishing substances ¢ € [0; £,q), we may
adopt that

Q(t)%%t[va(t)—v(t)].

This formula results if we use, approximately, a triangle instead of the figure formed by the vertical straight line and
the curves of two monotonically decreasing functions v(f) and v,(¢) intersecting at ¢ = 0.

Thus, for the lower estimate of the path covered by a drop on its escape at an arbitrary angle to the horizon
we obtain the expression

z<r>zs<z>—%t[va 0-v)]. (13)

The calculation of z(f) is reduced to application of Eqgs. (8), (11)—(13) and tables of Airy functions. Compu-
tations were performed at rp = 100 m, f = 10, € = 3 sec !, and vg = 130 m/sec. Corresponding to these is the
value t,q = 0.25 sec. In [12], a numerical integration in the system of two nonlinear differential equations with the
above initial data for a drop outflowing at an angle 8; = 20° to the horizon yielded the projections of the flight ve-
locity x(f) and y(y), as well as the respective absolute values of the motion velocity v, = G2 +)'12)1/2 and the estimates
of v(f) which are given by Eqgs. (8) and (9) (Table 1). A comparison shows that the estimate of the velocity from
below is close to the absolute value of the velocity obtained by numerical integration of the system of differential
equations in [12].

Table 2 present the values of x(f) and y(f), obtained numerically in [12], as well as the values of R(f) =
(x2 + yz)l/2 corresponding to them, and the estimates of z(f) found with the aid of Egs. (8), (11)—-(13) are indicated. The
values of z(f) < R(¢) and are close to the length of the radius-vector. The calculations confirm the effectiveness of the
proposed estimate.

CONCLUSIONS

1. Within the framework of the assumptions adopted, the differential equation of the vertical motion of a drop
has a closed solution in the Airy functions.

2. The formulas suggested are good for estimation of the range of flight of the evaporating drops of fire-ex-
tinguishing substances.

NOTATION

Ai(-—m), Bi(—m), and Ai’(-m), Bi’(-n), Airy functions and their derivatives with respect to m; g, free fall ac-
celeration; R(f), radius-vector of motion on efflux at an angle of 20° to the horizon; r(t), rg, current and initial radii
of a drop; ¢, time; t,q, time at which the current radius of a particle is half the initial one; v,(7), asymptotic value of
the velocity of vertical rise; v,, absolute value of the velocity on efflux at an angle 20° v(f) and v, current and initial
velocities of vertical rise of a drop; x(f), y(r), and x(f), y(f), coordinates of a drop on the trajectory and projection of
the velocity of plane motion measured in a rectangular coordinate system xOy; w(f), auxiliary function; z(7), height of
rise of a drop; B, reduced coefficient of aerodynamic resistance; €, parameter that characterizes the intensity of evapo-
ration. Subscripts: a, asymptotic; ad, admissible; n, numerical; 0, initial.
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